Abstract
AbstractThe use of supervised methods in space science have demonstrated powerful capability in classification tasks, but purely unsupervised methods have been less utilized for the classification of spacecraft observations. We use a combination of unsupervised methods, being principal component analysis, Self‐Organizing Maps, and hierarchical agglomerative clustering, to classify THEMIS and MMS observations as having occurred in the magnetosphere, magnetosheath, or the solar wind. The resulting classification are validated visually by analyzing the distribution of classifications and studying individual time series as well as by comparison to the labeled data set of a previous model, against which ours has an accuracy of 99.4. The model has a variety of applications beyond region classification such as deeper hierarchical analysis, magnetopause and bow shock crossing identification, and identification of bursty bulk flows, hot flow anomalies, and foreshock bubbles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Geophysical Research: Machine Learning and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.