Abstract

Spatial organisation and trafficking of endocytic organelles in mammalian cells is tightly regulated and dependent on cytoskeletal networks. The dynamics of endocytic pathways is modified in a number of diseases, including cancer, and notably in multidrug resistant (MDR) cells that are refractory to the effects of several anti-cancer agents. These cells often upregulate expression of drug-efflux pumps but this may be synergistic with alternative resistance mechanisms including increased acidification of endocytic organelles that enhances vesicular sequestration of weak-base anti-cancer drugs such as daunorubicin away from their nuclear target. Here, we characterised the distribution of sequestered daunorubicin in commonly used leukaemia cell lines, HL-60, K562, KG1a and the multidrug resistant HL-60/ADR line, and related this to the spatial distribution of their endocytic organelles and microtubule networks. HL-60 and KG1a cells contained microtubule arrays emanating from organising centres, and their endocytic organelles and daunorubicin labelled vesicles were scattered throughout the cytoplasm. HL-60/ADR and K562 cells showed extensive clustering of early and recycling endosomes, late endosomes, lysosomes and daunorubicin to a juxtanuclear region but these cells lacked microtubule arrays. Microtubular organisation within these clustered regions was however, required for spatial tethering of endocytic organelles and the Golgi, as treatment with nocodazole and paclitaxel had major effects on their distribution. HL-60 and HL-60/ADR cells had similar lysosomal pH of <5.0 and overall these findings suggests a general relationship between the absence of microtubule arrays and the propensity of leukaemia cell lines to cluster endocytic organelles and daunorubicin into the juxtanuclear region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.