Abstract
Clustering is a long-standing problem in computer science and is applied in virtually any scientific field for exploring the inherent structure of datasets. In biomedical research, clustering tools have been utilized in manifold areas, among many others in expression analysis, disease subtyping or protein research. A plethora of different approaches have been developed but there is only little guideline what approach is the optimal in what particular situation. Furthermore, a typical cluster analysis is an entire process with several highly interconnected steps; from preprocessing, proximity calculation, the actual clustering to evaluation and optimization. Only when all steps seamlessly work together, an optimal result can be achieved. This renders a cluster analyses tiresome and error-prone especially for non-experts. A mere trial-and-error approach renders increasingly infeasible when considering the tremendous growth of available datasets; thus, a strategic and thoughtful course of action is crucial for a cluster analysis. This manuscript provides an overview of the crucial steps and the most common techniques involved in conducting a state-of-the-art cluster analysis of biomedical datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.