Abstract
Abstract Generative design methods are able to produce a large number of potential solutions of architectural floor plans, which may be overwhelming for the decision-maker to cope with. Therefore, it is important to develop tools which organise the generated data in a meaningful manner. In this study, a comparative analysis of four architectural shape representations for the task of unsupervised clustering is presented. Three of the four shape representations are the Point Distance, Turning Function, and Grid-Based model approaches, which are based on known descriptors. The fourth proposed representation, Tangent Distance, calculates the distances of the contour's tangents to the shape's geometric centre. A hierarchical agglomerative clustering algorithm is used to cluster a synthetic dataset of 72 floor plans. When compared to a reference clustering, despite good perceptual results with the use of the Point Distance and Turning Function representations, the Tangent Distance descriptor (Rand index of 0.873) provides the best results. The Grid-Based descriptor presents the worst results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.