Abstract
Factor analysis is a powerful tool for dimensionality reduction in multivariate studies. This study extends the factor model with non-linear interactions. The main contribution of our work is to present two approaches to cluster the non-linear interactions and thus develop new models that are not restricted to the extreme scenarios where all non-null interactions are different or all are the same. The first strategy to handle the clusters involves a finite mixture of degenerate components. The second option is specified via the Dirichlet process. A comprehensive simulation study is developed to explore the performance of the proposals. A sensitivity analysis is carried out to evaluate advantages of estimating a smoothness parameter defined in a covariance function of the Gaussian process establishing the non-linearity of the interactions. In terms of application, the methodology is illustrated with the analysis of gene expression levels related to four breast cancer data sets. The genes belonging to disjoint genome regions, with copy number alteration, are connected to the main factors and their non-linear interactions are estimated and clustered. The mutual investigation and comparison of these four breast cancer data sets is rarely found in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.