Abstract

We propose a novel similarity measure of two image sequences based on shapeme histograms. The idea of shapeme histogram has been used for single image/texture recognition, but is used here to solve the sequence-to-sequence matching problem. We develop techniques to represent each sequence as a set of shapeme histograms, which captures different variations of the object appearances within the sequence. These shapeme histograms are computed from the set of 2D invariant features that are stable across multiple images in the sequence, and therefore minimizes the effect of both background clutter, and 2D pose variations. We define sequence similarity measure as the similarity of the most similar pair of images from both sequences. This definition maximizes the chance of matching between two sequences of the same object, because it requires only part of the sequences being similar. We also introduce a weighting scheme to conduct an implicit feature selection process during the matching of two shapeme histograms. Experiments on clustering image sequences of tracked objects demonstrate the efficacy of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.