Abstract

Given a set of moving points in ℝd, we show how to cluster them in advance, using a small number of clusters, so that at any time this static clustering is competitive with the optimal k-center clustering at that time. The advantage of this approach is that it avoids updating the clustering as time passes. We also show how to maintain this static clustering efficiently under insertions and deletions. To implement this static clustering efficiently, we describe a simple technique for speeding up clustering algorithms and apply it to achieve faster clustering algorithms for several problems. In particular, we present a linear time algorithm for computing a 2-approximation to the k-center clustering of a set of n points in ℝd. This slightly improves the algorithm of Feder and Greene, that runs in Θ(n log k) time (which is optimal in the algebraic decision tree model).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.