Abstract

Whole-slide scanners allow the digitization of an entire histological slide at very high resolution. This new acquisition technique opens a wide range of possibilities for addressing challenging image analysis problems, including the identification of tissue-based biomarkers. In this study, we use whole-slide scanner technology for imaging the proliferating activity patterns in tumor slides based on Ki67 immunohistochemistry. Faced with large images, pathologists require tools that can help them identify tumor regions that exhibit high proliferating activity, called "hot-spots" (HSs). Pathologists need tools that can quantitatively characterize these HS patterns. To respond to this clinical need, the present study investigates various clustering methods with the aim of identifying Ki67 HSs in whole tumor slide images. This task requires a method capable of identifying an unknown number of clusters, which may be highly variable in terms of shape, size, and density. We developed a hybrid clustering method, referred to as Seedlink. Compared to manual HS selections by three pathologists, we show that Seedlink provides an efficient way of detecting Ki67 HSs and improves the agreement among pathologists when identifying HSs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.