Abstract

Matrix variate longitudinal discrete data can arise in transcriptomics studies when the data are collected for N genes at r conditions over t time points, and thus, each observation Yn for n=1,…,N can be written as an r×t matrix. When dealing with such data, the number of parameters in the model can be greatly reduced by considering the matrix variate structure. The components of the covariance matrix then also provide a meaningful interpretation. In this work, a mixture of matrix variate Poisson-log normal distributions is introduced for clustering longitudinal read counts from RNA-seq studies. To account for the longitudinal nature of the data, a modified Cholesky-decomposition is utilized for a component of the covariance structure. Furthermore, a parsimonious family of models is developed by imposing constraints on elements of these decompositions. The models are applied to both real and simulated data, and it is demonstrated that the proposed approach can recover the underlying cluster structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.