Abstract

A new version of the Abrasion–Ablation Monte Carlo for Colliders model with the Minimum Spanning Tree clusterization algorithm (AAMCC-MST) is used to simulate 16O–16O collisions at the LHC, accounting for the presence of alpha-clustered states in 16O. The yields of He, Li, Be, B, C and N spectator nuclei are calculated taking into account the pre-equilibrium clusterization of spectator matter and short-range correlations (SRC) between nucleons in 16O. The impact of α-clustering and SRC on the production of spectator neutrons and deuterons is investigated. The results on the production of spectator nucleons and fragments can help in evaluating the performance of Zero Degree Calorimeters in future studies of 16O–16O collisions at the LHC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call