Abstract
AbstractClustering of flexible fibers in riser flows is investigated using a hybrid approach of Discrete Element Method and Computational Fluid Dynamics. Unlike spherical particles, the flexible fibers possess elongated shape, undergo significant deformation, and dissipate kinetic energies through rapid fiber deformation. The present studies show that these distinct features have significant impacts on the cluster characteristics of the fibers. A larger fiber aspect ratio leads to larger number and sizes of agglomerates, while it causes a reduction in heterogeneity of solids distribution due to the more dilute clusters with reduced packing densities. As the fibers become more flexible, the heterogeneity increases, and denser clusters are obtained. More significant effects of the fiber flexibility on the clustering are observed for the fibers with larger aspect ratios. The increased energy dissipation through the rapid fiber deformation enhances the clustering by augmenting the number and size of the agglomerates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.