Abstract
This paper describes the incorporation of seven stand-alone clustering programs into S-PLUS, where they can now be used in a much more flexible way. The original Fortran programs carried out new cluster analysis algorithms introduced in the book of Kaufman and Rousseeuw (1990). These clustering methods were designed to be robust and to accept dissimilarity data as well as objects-by-variables data. Moreover, they each provide a graphical display and a quality index reflecting the strength of the clustering. The powerful graphics of S-PLUS made it possible to improve these graphical representations considerably. The integration of the clustering algorithms was performed according to the object-oriented principle supported by S-PLUS. The new functions have a uniform interface, and are compatible with existing S-PLUS functions. We will describe the basic idea and the use of each clustering method, together with its graphical features. Each function is briefly illustrated with an example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.