Abstract

An important goal in image analysis is to cluster and recognize objects of interest according to the shapes of their boundaries. Clustering such objects faces at least four major challenges including a curved shape space, a high-dimensional feature space, a complex spatial correlation structure, and shape variation associated with some covariates (e.g., age or gender). The aim of this article is to develop a penalized model-based clustering framework to cluster landmark-based planar shape data, while explicitly addressing these challenges. Specifically, a mixture of offset-normal shape factor analyzers (MOSFA) is proposed with mixing proportions defined through a regression model (e.g., logistic) and an offset-normal shape distribution in each component for data in the curved shape space. A latent factor analysis model is introduced to explicitly model the complex spatial correlation. A penalized likelihood approach with both adaptive pairwise fused Lasso penalty function and L2 penalty function is used to automatically realize variable selection via thresholding and deliver a sparse solution. Our real data analysis has confirmed the excellent finite-sample performance of MOSFA in revealing meaningful clusters in the corpus callosum shape data obtained from the Attention Deficit Hyperactivity Disorder-200 (ADHD-200) study. Supplementary materials for this article are available online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.