Abstract

Learning better representations is essential in medical image analysis for computer-aided diagnosis. However, learning discriminative semantic features is a major challenge due to the lack of large-scale well-annotated datasets. Thus, how can we learn a well-structured categorizable embedding space in limited-scale and unlabeled datasets? In this paper, we proposed a novel clustering-guided twin-contrastive learning framework (CTCL) that learns the discriminative representations of probe-based confocal laser endomicroscopy (pCLE) images for gastrointestinal (GI) tumor classification. Compared with traditional contrastive learning, in which only two randomly augmented views of the same instance are considered, the proposed CTCL aligns more semantically related and class-consistent samples by clustering, which improved intra-class tightness and inter-class variability to produce more informative representations. Furthermore, based on the inherent properties of CLE (geometric invariance and intrinsic noise), we proposed to regard CLE images with any angle rotation and CLE images with different noises as the same instance, respectively, for increased variability and diversity of samples. By optimizing CTCL in an end-to-end expectation-maximization framework, comprehensive experimental results demonstrated that CTCL-based visual representations achieved competitive performance on each downstream task as well as more robustness and transferability compared with existing state-of-the-art SSL and supervised methods. Notably, CTCL achieved 75.60%/78.45% and 64.12%/77.37% top-1 accuracy on the linear evaluation protocol and few-shot classification downstream tasks, respectively, which outperformed the previous best results by 1.27%/1.63% and 0.5%/3%, respectively. The proposed method holds great potential to assist pathologists in achieving an automated, fast, and high-precision diagnosis of GI tumors and accurately determining different stages of tumor development based on CLE images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call