Abstract

Clustering analysis of functional data, which comprises observations that evolve continuously over time or space, has gained increasing attention across various scientific disciplines. Practical applications often involve functional data that are contaminated with measurement errors arising from imprecise instruments, sampling errors, or other sources. These errors can significantly distort the inherent data structure, resulting in erroneous clustering outcomes. In this article, we propose a simulation-based approach designed to mitigate the impact of measurement errors. Our proposed method estimates the distribution of functional measurement errors through repeated measurements. Subsequently, the clustering algorithm is applied to simulated data generated from the conditional distribution of the unobserved true functional data given the observed contaminated functional data, accounting for the adjustments made to rectify measurement errors. We illustrate through simulations show that the proposed method has improved numerical performance than the naive methods that neglect such errors. Our proposed method was applied to a childhood obesity study, giving more reliable clustering results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.