Abstract

Ultrasound-driven microbubbles have been used in therapeutic applications to deliver drugs across capillaries and into cells or to dissolve blood clots. Yet the performance and safety of these applications have been difficult to control. Microbubbles exposed to ultrasound not only volumetrically oscillate, but also move due to acoustic radiation, or Bjerknes, forces. The purpose of this work was to understand the extent to which microbubbles moved and clustered due to secondary Bjerknes forces. A microbubble population was exposed to a 1-MHz ultrasound pulse with a peak-rarefactional pressure of 50-100 kPa and a pulse length of 20 ms. Microbubbles exposed to low-pressure therapeutic ultrasound were observed to cluster at clustering rates of 0.01-0.02 microbubbles per duration (in ms) per initial average inter-bubble distance (in μm), resulting in 1 to 3 clustered microbubbles per initial average inter-bubble distance (in μm). Higher pressures caused faster clustering rates and a larger number of clustered microbubbles. Experimental data revealed clustering time scales, cluster localizations, and cluster sizes that were in reasonable agreement with simulations using a time-averaged model at low pressures. This study demonstrates that clustering of microbubbles occurs within a few milliseconds and is likely to influence the distribution of stimuli produced in therapeutic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.