Abstract

A cosmological background of gravitational waves induces angular deviations in the propagation of light traversing it. All observed astrophysical sources might therefore have varying apparent positions, with the time dependence set by the wave period. Wavelengths greater than a kiloparsec are examined, so the positions are frozen but in general correlated. Comparison with observed galaxy-galaxy n-point correlation functions provide a spectrum-independent limit on the energy density of gravitational waves with wavelengths between a few tens of kiloparsecs and a few hundred megaparsecs of Omega(GW) less than 0.001.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.