Abstract

An unsupervised classification method for point events occurring on a geometric network is proposed. The idea relies on the distributional flexibility and practicality of random partition models to discover the clustering structure featuring observations from a particular phenomenon taking place on a given set of edges. By incorporating the spatial effect in the random partition distribution, induced by a Dirichlet process, one is able to control the distance between edges and events, thus leading to an appealing clustering method. A Gibbs sampler algorithm is proposed and evaluated with a sensitivity analysis. The proposal is motivated and illustrated by the analysis of crime and violence patterns in Mexico City.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.