Abstract

A model-based clustering method for compositional data is explored in this article. Most methods for compositional data analysis require some kind of transformation. The proposed method builds a mixture model using Dirichlet distribution which works with the unit sum constraint. The mixture model uses a hard EM algorithm with some modification to overcome the problem of fast convergence with empty clusters. This work includes a rigorous simulation study to evaluate the performance of the proposed method over varied dimensions, number of clusters, and overlap. The performance of the model is also compared with other popular clustering algorithms often used for compositional data analysis (e.g. KMeans, Gaussian mixture model (GMM) Gaussian Mixture Model with Hard EM (Hard GMM), partition around medoids (PAM), Clustering Large Applications based on Randomized Search (CLARANS), Density-Based Spatial Clustering of Applications with Noise (DBSCAN) etc.) for simulated data as well as two real data problems coming from the business and marketing domain and physical science domain, respectively. The study has shown promising results exploiting different distributional patterns of compositional data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.