Abstract
ABSTRACTWe present a technique for clustering categorical data by generating many dissimilarity matrices and combining them. We begin by demonstrating our technique on low-dimensional categorical data and comparing it to several other techniques that have been proposed. We show through simulations and examples that our method is both more accurate and more stable. Then we give conditions under which our method should yield good results in general. Our method extends to high-dimensional categorical data of equal lengths by ensembling over many choices of explanatory variables. In this context, we compare our method with two other methods. Finally, we extend our method to high-dimensional categorical data vectors of unequal length by using alignment techniques to equalize the lengths. We give an example to show that our method continues to provide useful results, in particular, providing a comparison with phylogenetic trees. Supplementary material for this article is available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.