Abstract
Link prediction in social networks has become a growing concern among researchers. In this paper, the clustering method was used to exploit the grouping tendency of nodes, and a clustering index (CI) was proposed to predict potential links with characteristics of scientific cooperation network taken into consideration. Results showed that CI performed better than the traditional indices for scientific coauthorship networks by compensating for their disadvantages. Compared with traditional algorithms, this method for a specific type of network can better reflect the features of the network and achieve more accurate predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.