Abstract

Developing effective security measures is the most challenging task now a days and hence calls for the development of intelligent intrusion detection systems. Most of the existing intrusion detection systems perform best at detecting known attacks but fail to detect zero-day attacks due to the lack of labeled examples. Authors in this paper, comes with a clustering-based IDS framework that can effectively detect both known and zero-day attacks by following unsupervised machine learning techniques. This research uses NSL-KDD dataset for the motive of experimentation and the experimental results exhibit best performance with an accuracy of 78%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.