Abstract

Efficient interest prediction for social networks is critical for both users and service providers for behavior analysis and a series of extension services. However, most existing approaches are inefficient, incomplete or isolated. In this paper, we propose combination of Gaussian and Markov approaches (namely, GAM) as typical soft computing technology for interest prediction of social intelligent multimedia systems. GAM model considers “the number of posted messages” as the only parameter, and defines selection logic to implement either Gaussian or Markov based approaches. Our proposed solution takes the advantage of Gaussian model in prediction accuracy and computation complexity, and advantage of Markov model in high availability. Further experiments illustrate that our solution achieves higher prediction accuracy of 94.3% (without considering the influence of swing users), with the best result achieved ever.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.