Abstract

In this paper, we propose a channel assignment method that can mitigate the inter-WBAN interference when the density of WBANs is high. To achieve the goal, we group the coexisting WBANs into a set of clusters by using the Louvain algorithm and allocate different channels to the WBANs in the same cluster by using a graph coloring method. By increasing the distance between the WBANs using the same channel, our method reduces the inter-WBAN interference. As a result, compared with the conventional centralized channel allocation method, our method increases the average data rate of a WBAN more than twice even when the number of coexisting WBANs is larger than the number of available channels. Compared with a distributed method involving an iterative process, our method reduces the channel decision time by 94.6%. Furthermore, since our method self-configures the algorithm parameters dynamically according to the topology changes, it can be used without human intervention even when the topology changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call