Abstract

Many clustering methods partition the data groups based on the input data similarity matrix. Thus, the clustering results highly depend on the data similarity learning. Because the similarity measurement and data clustering are often conducted in two separated steps, the learned data similarity may not be the optimal one for data clustering and lead to the suboptimal results. In this paper, we propose a novel clustering model to learn the data similarity matrix and clustering structure simultaneously. Our new model learns the data similarity matrix by assigning the adaptive and optimal neighbors for each data point based on the local distances. Meanwhile, the new rank constraint is imposed to the Laplacian matrix of the data similarity matrix, such that the connected components in the resulted similarity matrix are exactly equal to the cluster number. We derive an efficient algorithm to optimize the proposed challenging problem, and show the theoretical analysis on the connections between our method and the K-means clustering, and spectral clustering. We also further extend the new clustering model for the projected clustering to handle the high-dimensional data. Extensive empirical results on both synthetic data and real-world benchmark data sets show that our new clustering methods consistently outperforms the related clustering approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.