Abstract

This research investigates distributed clustering scheme and proposes a cluster-based routing protocol for Delay-Tolerant Mobile Networks (DTMNs). The basic idea is to distributively group mobile nodes with similar mobility pattern into a cluster, which can then interchangeably share their resources (such as buffer space) for overhead reduction and load balancing, aiming to achieve efficient and scalable routing in DTMN. Due to the lack of continuous communications among mobile nodes and possible errors in the estimation of nodal contact probability, convergence and stability become major challenges in distributed clustering in DTMN. To this end, an exponentially weighted moving average (EWMA) scheme is employed for on-line updating nodal contact probability, with its mean proven to converge to the true contact probability. Based on nodal contact probabilities, a set of functions including Sync(), Leave(), and Join() are devised for cluster formation and gateway selection. Finally, the gateway nodes exchange network information and perform routing. Extensive simulations are carried out to evaluate the effectiveness and efficiency of the proposed cluster-based routing protocol. The simulation results show that it achieves higher delivery ratio and significantly lower overhead and end-to-end delay compared with its non-clustering counterpart.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.