Abstract
Little is known about variations in electricity use at finely-resolved timescales, or the drivers for those variations. Using measured electricity use data from 103 homes in Austin, TX, this analysis sought to (1) determine the shape of seasonally-resolved residential demand profiles, (2) determine the optimal number of normalized representative residential electricity use profiles within each season, and (3) draw correlations to the different profiles based on survey data from the occupants of the 103 homes. Within each season, homes with similar hourly electricity use patterns were clustered into groups using the k-means clustering algorithm. Then probit regression was performed to determine if homeowner survey responses could serve as predictors for the clustering results. This analysis found that Austin homes fall into one of two seasonal groups with some homes using more expensive electricity (from a wholesale electricity market perspective) than others. Regression results indicate that variables such as if someone works from home, hours of television watched per week, and education levels have significant correlations with average profile shape, but might vary across seasons. The results herein also indicate that policies such as time-of-use or real-time electricity structures might be more likely to affect lower income households during some high electricity use parts of the year.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.