Abstract

Clusterin is a heterodimeric glycoprotein (α- and β-chain), which has been described as an extracellular molecular chaperone. In humans, clusterin is an amyloid-associated protein, co-localizing with fibrillar deposits in several amyloidoses, including Alzheimer's disease. To clarify its potential implication in amyloid formation, we located aggregation-prone regions within the sequence of clusterin α-chain, via computational methods. We had peptide-analogues, which correspond to each of these regions, chemically synthesized and experimentally demonstrated that all of them can form amyloid-like fibrils. We also provide evidence that the same peptide-analogues can inhibit amyloid-β fibril formation, potentially making them appropriate drug candidates for Alzheimer's disease. At the same time, our findings hint that the respective aggregation-prone clusterin regions may be implicated in the molecular mechanism in which clusterin inhibits amyloid formation. Furthermore, we suggest that molecular chaperones with amyloidogenic properties might have a role in the regulation of amyloid formation, essentially acting as functional amyloids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.