Abstract
The lateral flow assay is one of the most convenient analytical techniques for analyzing the immune response, but its applicability to precise genetic analyses is limited by the false-positive signal and tedious and inefficient hybridization steps. Here, we introduce the CRISPR (clustered regularly interspaced short palindromic repeats) /Cas system into the lateral flow assay, termed CRISPR/Cas9-mediated lateral flow nucleic acid assay (CASLFA), to address such issues. In this study, CASLFA is utilized to identify Listeria monocytogenes, genetically modified organisms (GMOs), and African swine fever virus (ASFV) at a detection limit of hundreds of copies of genome samples with high specificity within 1 h. We further evaluated the performance of CASLFA in a nonlaboratory environment and successfully confirmed 27 ASFV-infected samples from 110 suspected swine serum samples, with an accuracy of 100% when compared to real-time PCR (RT-PCR) assay. CASLFA satisfies some of the characteristics of a next-generation molecular diagnostics tool due to its rapidity and accuracy, allowing for point-of-care use without the need for technical expertise and complex ancillary equipment. This method has great potential for gene analysis in resource-poor or nonlaboratory environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.