Abstract

The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated (Cas) system is a powerful genomic DNA editing tool. The increased applications of gene editing tools, including the CRISPR-Cas system, have contributed to recent advances in biological fields, such as genetic disease therapy, disease-associated gene screening and detection, and cancer therapy. However, the major limiting factor for the wide application of gene editing tools is gene editing efficiency. This review summarizes the recent advances in factors affecting the gene editing efficiency of the CRISPR-Cas9 system and the CRISPR-Cas9 system optimization strategies. The homology-directed repair efficiency-related signal pathways and the form and delivery method of the CRISPR-Cas9 system are the major factors that influence the repair efficiency of gene editing tools. Based on these influencing factors, several strategies have been developed to improve the repair efficiency of gene editing tools. This review provides novel insights for improving the repair efficiency of the CRISPR-Cas9 gene editing system, which may enable the development and improvement of gene editing tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.