Abstract
Federated learning (FL) is a distributed machine learning framework that allows resource-constrained clients to train a global model jointly without compromising data privacy. Although FL is widely adopted, high degrees of systems and statistical heterogeneity are still two main challenges, which leads to potential divergence and nonconvergence. Clustered FL handles the problem of statistical heterogeneity straightly by discovering the geometric structure of clients with various data generation distributions and getting multiple global models. The number of clusters contains prior knowledge about the clustering structure and has a significant impact on the performance of clustered FL methods. Existing clustered FL methods are inadequate for adaptively inferring the optimal number of clusters in environments with high systems' heterogeneity. To address this issue, we propose an iterative clustered FL (ICFL) framework in which the server dynamically discovers the clustering structure by successively performing incremental clustering and clustering in one iteration. We focus on the average connectivity within each cluster and give incremental clustering and clustering methods that are compatible with ICFL based on mathematical analysis. We evaluate ICFL in experiments on high degrees of systems and statistical heterogeneity, multiple datasets, and convex and nonconvex objectives. Experimental results verify our theoretical analysis and show that ICFL outperforms several clustered FL baseline methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.