Abstract

We introduce a mean-field and a perturbative approach, based on clusters, to describe the ground state of fermionic strongly correlated systems. In the cluster mean-field approach, the ground-state wave function is written as a simple tensor product over optimized cluster states. The optimization of the single-particle basis where the cluster mean field is expressed is crucial in order to obtain high-quality results. The mean-field nature of the Ansatz allows us to formulate a perturbative approach to account for intercluster correlations; other traditional many-body strategies can be easily devised in terms of the cluster states. We present benchmark calculations on the half-filled 1D and (square) 2D Hubbard model, as well as the lightly doped regime in 2D, using cluster mean-field and second-order perturbation theory. Our results indicate that, with sufficiently large clusters or to second-order in perturbation theory, a cluster-based approach can provide an accurate description of the Hubbard model in the considered regimes. Several avenues to improve upon the results presented in this work are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call