Abstract
Privacy is a significant issue that requires consideration in all applications. Data collected from various individuals and organizations must be disclosed to the public or private parties for analysis and research purposes. The collected data are studied and analyzed digitally for the extraction of various useful patterns for decision-making research purposes. Privacy-preserving data publishing is significant as privacy violations in the patient’s data may have an adverse effect on the individual positive reputation. An efficient Cluster Based anonymity model has been proposed to anonymizes the 1:1 dataset with a single sensitive attribute through the introduction of a concept named “Semi-sensitive attribute.” Based on correlation, the attributes are categorized as quasi-identifier and semi-sensitive attributes. The k-anonymity is implemented on the quasi-identifier with the semi-sensitive attribute table and Fuzzy c-means clustering has been implemented to fix a range of values for anonymizing the semi-sensitive attributes. The disease is considered a sensitive attribute as the research work focuses on the medical dataset. The proposed model is demonstrated to resist the three privacy attacks such as, i)Identity Disclosure, ii) Attribute Disclosure, and iii) Membership Disclosure. The utility loss is calculated for each row and utility loss of each record are aggregated and considered as the total information loss for each attribute. Cluster Based anonymity model measured the utility loss for all the attributes and the average utility loss for the anonymized patient dataset is 3.78%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.