Abstract
In the past few years wireless sensor networks have received a greater interest in application such as disaster management, border protection, combat field reconnaissance, and security surveillance. Sensor nodes are expected to operate autonomously in unattended environments and potentially in large numbers. Failures are inevitable in wireless sensor networks due to inhospitable environment and unattended deployment. The data communication and various network operations cause energy depletion in sensor nodes and therefore, it is common for sensor nodes to exhaust its energy completely and stop operating. This may cause connectivity and data loss. Therefore, it is necessary that network failures are detected in advance and appropriate measures are taken to sustain network operation. In this paper we survey cellular architecture and cluster-based to sustain network operation in the event of failure cause of energy-drained nodes. The failure detection and recovery technique recovers the cluster structure in less than one-fourth of the time taken by the Gupta algorithm and is also proven to be 70% more energy-efficient than the same. The cluster-based failure detection and recovery scheme proves to be an efficient and quick solution to robust and scalable sensor network for long and sustained operation. In cellular architecture the network is partitioned into a virtual grid of cells to perform fault detection and recovery locally with minimum energy consumption. Fault detection and recovery in a distributed manner allows the failure report to be forwarded across cells. Also this algorithm has been compared with some existing related work and proven to be more energy efficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.