Abstract
Many interesting spaces --- including all positroid strata and wild character varieties --- are moduli of constructible sheaves on a surface with microsupport in a Legendrian link. We show that the existence of cluster structures on these spaces may be deduced in a uniform, systematic fashion by constructing and taking the sheaf quantizations of a set of exact Lagrangian fillings in correspondence with isotopy representatives whose front projections have crossings with alternating orientations. It follows in turn that results in cluster algebra may be used to construct and distinguish exact Lagrangian fillings of Legendrian links in the standard contact three space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.