Abstract
Solid solutions occur when multiple chemical species share sites of a common crystal lattice. Although the single site occupation is random, chemical interaction preferences bias the occupation probabilities of neighboring sites, and this bias reduced the entropy of mixing below its ideal value. Sufficiently strong bias leads to symmetry-breaking phase transitions. We apply the cluster variation method to explore solid solutions on body centered cubic lattices in the context of two specific compounds that exhibit opposite ordering trends. Employing density functional theory to model the energetics, we show that CuZn exhibits an order-disorder transition to the CsCl prototype structure, while AlLi instead takes the NaTl prototype structure, and we evaluate their temperature-dependent order parameters, correlations and entropies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.