Abstract

In this paper the relation between the cluster integrable systems and $q$-difference equations is extended beyond the Painlev\'e case. We consider the class of hyperelliptic curves when the Newton polygons contain only four boundary points. The corresponding cluster integrable Toda systems are presented, and their discrete automorphisms are identified with certain reductions of the Hirota difference equation. We also construct non-autonomous versions of these equations and find that their solutions are expressed in terms of 5d Nekrasov functions with the Chern-Simons contributions, while in the autonomous case these equations are solved in terms of the Riemann theta-functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.