Abstract

We apply a simple statistical mechanics cluster approximation for studying clustering in the Kern and Frenkel model of Janus fluids. The approach is motivated by recent Monte Carlo simulations work on the same model revealing that the vapor coexisting with the liquid phase contains clusters of different sizes and shapes whose equilibrium concentrations in general depend on the interaction range as well as on thermodynamic parameters. The approximation hinges on a separation between the intra- and inter-cluster contribution to thermodynamics, where only the former is explicitly computed by Monte Carlo simulations. Two level of a simple liquid theory approximations are exploited for the description of the latter. In the first we use the ideal-gas expressions and obtain a qualitative agreement with extensive Monte Carlo bulk simulations. This can be improved to a semi-quantitative agreement, by using a hard-sphere description for the cluster-cluster correlations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.