Abstract

AbstractMulti-robot systems offer many advantages over a single-robot system, including redundancy, coverage and flexibility. One of the key technical considerations in fielding multi-robot systems for real-world applications is the coordination of the individual units. The cluster space control technique promotes simplified specification and monitoring of the motion of mobile multi-robot systems. Previous work has established this approach and has experimentally verified its use for land-based systems consisting of 2-4 robots and with varying implementations ranging from automated trajectory control to human-in-the-loop piloting. In this paper, we describe the design and fabrication of a new low-cost autonomous surface vessel (ASV). The technical system includes a multi-boat system capable of autonomous navigation using the cluster space control technique. It also includes a centralized controller, currently implemented via a shore-based computer that wirelessly receives ASV data and relays drive commands. Using the cluster space control approach, these drive commands allow a pilot to remotely drive a two-ASV cluster or to specify that the two ASVs maintain formation with a third boat. The resulting multi-ASV clusters can be arbitrarily translated, rotated, and resized depending on the needs of a specific application. Experimental results demonstrating these capabilities are provided, and plans for future work are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call