Abstract

Amylopectin from waxy corn and the three nanosized amylopectin fragments (NAFs)—NAF(56), NAF(20), and NAF(8)—from waxy corn starch with a hydrodynamic diameter of 227, 56, 20, and 8 nm, respectively, were randomly labeled with 1-pyrenebutyric acid. The efficiency of these pyrene-labeled amylopectin-based polysaccharides (Py-AbPS) for pyrene excimer formation (PEF) upon diffusive encounter between an excited and a ground-state pyrene increased with increasing concentration of unlabeled NAF(56) in Py-AbPS dispersions in DMSO. Fluorescence decay analysis of the Py-AbPS dispersions in DMSO prepared with increasing [NAF(56)] yielded the maximum number (Nblobexp) of anhydroglucose units (AGUs) separating two pyrene-labeled AGUs while still allowing PEF. Comparison of Nblobexp with Nblobtheo, obtained by conducting molecular mechanics optimizations on helical oligosaccharide constructs with HyperChem, led to a relationship between the interhelical distance (dh-h) in a cluster of oligosaccharide helices, [NAF(56)], and the number of helices in a cluster. It was found that the AbPSs were composed of building blocks made of 3.5 (±0.9) helices that self-assembled into increasingly larger clusters with increasing [NAF(56)]. The ability of PEF-based experiments to yield the cluster size of AbPSs provides a new experimental means to probe the interior of AbPSs at the molecular level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.