Abstract

The question of how nonspecific reversible intermolecular protein interactions affect solution rheology at high concentrations is fundamentally rooted in the translation of nanometer-scale interactions into macroscopic properties. Well-defined solutions of purified monoclonal antibodies (mAbs) provide a useful system with which to investigate the manifold intricacies of weak protein interactions at high concentrations. Recently, characterization of self-associating IgG1 antibody (mAb2) solutions has established the direct role of protein clusters on concentrated mAb rheology. Expanding on our earlier work with three additional mAbs (mAb1, mAb3, and mAb4), the observed concentration-dependent static light scattering and rheological data present a substantially more complex relationship between protein interactions and solution viscosity at high concentrations. The four mAb systems exhibited divergent correlations between cluster formation (size) and concentrated solution viscosities dependent on mAb primary sequence and solution conditions. To address this challenge, well-established features of colloidal cluster phenomena could be applied as a framework for interpreting our observations. The initial stages of mAb cluster formation were investigated with small-angle X-ray scattering (SAXS) and ensemble-optimized fit methods, to uncover shifts in the dimer structure populations which are produced by changes in mAb interaction modes and association valence under the different solution conditions. Analysis of mAb average cluster number and effective hydrodynamic radii at high concentrations revealed cluster architectures can have a wide range of fractal dimensions. Collectively, the static light scattering, SAXS, and rheological characterization demonstrate that nonspecific and anisotropic attractive intermolecular interactions produce antibody clusters with different quinary structures to regulate the rheological properties of concentrated mAb solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call