Abstract
With the help of computer methods (ToposPro software package), a combinatorial topological analysis and modeling of the self-assembly of Lu4Te4-oF8 (Fm-3m, V = 211.0 Å3), Te4Lu28-oC32 (Cmcm, V = 908.3 Å3), Lu3(TeLu3)Lu2-hP9 (P-62m, V = 908.3 Å3), and Lu66Te24-mC90 (C12/m1, V = 2467.2 Å3) crystal structures are carried out. For the crystal structure of Lu4Te4-oF8, cluster precursors K8 = 0@Te4Lu4 with symmetry –43m; for Te4Lu28-oC32, tetrahedral cluster precursors K4 = 0@Lu4 and K4 = 0@TeLu3 with symmetry 2 and m; and for Lu3(TeLu3)Lu2, cluster precursors K7 = 0@Lu3(TeLu3) with symmetry 3m and spacers Lu are established. For the crystal structure of Lu66Te24-mC90, pyramid-shaped cluster precursors K5 = 0@Lu5 with symmetry 2, tetrahedra K4 = 0@Lu4 with symmetry 2, tetrahedra K4 = 0@TeLu3, and tetrahedra K4 = 0@Te2Lu2 are established, and rings K3 = 0@TeLu2 are involved in the formation of supraclusters-trimers. The symmetry and topological code of the processes of self-assembly of 3D structures from cluster precursors is reconstructed in the following form: primary chain → layer → framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.