Abstract
The possibility of cluster radioactivity (CR) of the neutron-deficient nuclei in the trans-tin region is explored by using the effective liquid drop model (ELDM), generalized liquid drop model (GLDM), and several sets of analytic formulas. It is found that the minimal half-lives are at Nd = 50 (Nd is the neutron number of the daughter nucleus) for the same kind cluster emission because of the Q value (released energy) shell effect at Nd = 50. Meanwhile, it is shown that the half-lives of α-like (Ae = 4n, Ze = Ne. Ze and Ne are the charge number and neutron number of the emitted cluster, respectively.) cluster emissions leading to the isotopes with Zd = 50 (Zd is the proton number of the daughter nucleus) are easier to measure than those of non-α-like (Ae = 4n + 2) cases due to the large Q values in α-like cluster emission processes. Finally, some α-like CR half-lives of the Nd = 50 nuclei and their neighbours are predicted, which are useful for searching for the new CR in future experiments.
Highlights
The possibility of cluster radioactivity (CR) of the neutron-deficient nuclei in the trans-tin region is explored by using the effective liquid drop model (ELDM), generalized liquid drop model (GLDM), and several sets of analytic formulas
It is well known that the CR half-lives are dependent on the Q values, which can be extracted by
When they are extended to calculate the CR half-lives in trans-tin region, the predicted half-lives deviate from the experimental data. This indicates that the two scaling laws are not so universal and not suitable for estimating the CR half-lives in the trans-tin region
Summary
The possibility of cluster radioactivity (CR) of the neutron-deficient nuclei in the trans-tin region is explored by using the effective liquid drop model (ELDM), generalized liquid drop model (GLDM), and several sets of analytic formulas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.