Abstract

The cluster perturbation theory is presented in the 2D Hubbard model constructed using X operators in the Hubbard-I approximation. The short-range magnetic order is taken into account by dividing the entire lattice into individual 2 × 2 clusters and solving the eigenvalue problem in an individual cluster using exact diagonalization taking into account all excited levels. The case of half-filling taking into account jumps between nearest neighbors is considered. As a result of numerical solution, a shadow zone is discovered in the quasiparticle spectrum. It is also found that a gap in the density of states in the quasiparticle spectrum at zero temperature exists for indefinitely small values of Coulomb repulsion parameter U and increases with this parameter. It is found that the presence of this gap in the spectrum is due to the formation of a short-range antiferromagnetic order. An analysis of the temperature evolution of the density of states shows that the metal-insulator transition occurs continuously. The existence of two characteristic energy scales at finite temperatures is demonstrated, the larger scale is associated with the formation of a pseudogap in the vicinity of the Fermi level, and the smaller scale is associated with the metal-insulator transition temperature. A peak in the density of states at the Fermi level, which is predicted in the dynamic mean field theory in the vicinity of the metal-insulator transition, is not observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.