Abstract

This chapter discusses the existence of single-wall carbon nanocones (SWNCs), especially nanohorns (SWNHs) in organic solvents in the form of clusters. A theory is developed based on a bundlet model describing their distribution function by size. Phenomena have a unified explanation in bundlet model in which free energy of an SWNC, involved in a cluster, is combined from two components: a volume one, proportional to number of molecules n in a cluster, and a surface one proportional to n1/2. A bundlet model enables describing distribution function of SWNC clusters by size. From purely geometrical differences, bundlet (SWNCs) and droplet (fullerene) models predict different behaviours. The SWNCs of various disclinations are investigated via energetic–structural analyses. Several SWNC’s terminations are studied which are different among one another because of the type of closing structure and arrangement. Packing efficiencies and interaction-energy parameters of SWNCs/SWNHs are intermediate between fullerene and single-wall carbon nanotube (SWNT) clusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.