Abstract

Cluster of differentiation 36 (CD36) is involved in the development of nonalcoholic steatohepatitis (NASH). Excess CD36 facilitates liver cells taking fatty acid and activates inflammatory signals to promote hepatic steatosis and inflammation. However, CD36 deficiency paradoxically promotes nonalcoholic fatty liver disease by unknown mechanisms. We explored the probable molecular mechanism of hepatic inflammation induced by CD36 deficiency. CD36 deletion in mice (CD36-/- mice) specifically increased monocyte chemotactic protein-1 (MCP-1) in hepatocytes, promoted macrophage migration to the liver, and aggravated hepatic inflammatory response and fibrosis. The nuclear expression of histone deacetylase 2 (HDAC2), which highly expresses in wild-type hepatocytes and has an inhibitory effect on acetyl histone 3 (H3), was reduced in CD36-deficient hepatocytes. Consequently, the level of acetyl H3 binding to MCP-1 promoters was increased in CD36-deficient hepatocytes, causing hepatic-specific MCP-1 transcriptional activation. Reduction of nuclear HDAC2 in both CD36-/- mice liver and cultured hepatocytes was due to reduction of intracellular reactive oxygen species (ROS) level, while supplement of low-concentration hydrogen peroxide (H2O2) overcame the suppression of HDAC2 caused by CD36 deficiency, decreasing MCP-1 gene transcription and microphage migration. Our results provide first evidence that decreased ROS production by CD36 deletion was also harmful for livers. The fine balance of CD36 plays an important role in maintaining balances of hepatic ROS and nuclear HDAC2, which could be a potential new therapeutic strategy for the prevention of NASH development. CD36 deficiency promoted the development of NASH by facilitating the transcription of MCP-1 in hepatocytes due to the reduction of ROS and nuclear HDAC2. Antioxid. Redox Signal. 00, 000-000.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.