Abstract

Structural parameters for chemisorption of atomic carbon above a Si(100) surface have been obtained through a Si 35H 32 cluster model and a MINDO/3 hamiltonian. The most stable position has been found to be the bridge one when considering the unrelaxed surface. The stability increases about 14 kcal/mol when relaxation of the surface is allowed. Further research has been carried out using a reduced cluster model (Si 9H 12) at the ab initio Hartree-Fock level of calculation. Results confirm the increase of stability of the relaxed system. At this level, the binding energy is 90 kcal/mol for the unrelaxed surface and the stabilization when the surface is relaxed is of about 20% with respect to the non-relaxed surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.