Abstract
Entanglement entropy (EE), a fundamental conception in quantum information for characterizing entanglement, has been extensively employed to explore quantum phase transitions (QPTs). Although the conventional single-site mean-field (MF) approach successfully predicts the emergence of QPTs, it fails to include any entanglement. Here, for the first time, in the framework of a cluster MF treatment, we extract the signature of EE in the bosonic superfluid-insulator transitions. We consider a trimerized Kagome lattice of interacting bosons, in which each trimer is treated as a cluster, and implement the cluster MF treatment by decoupling all inter-trimer hopping. In addition to superfluid and integer insulator phases, we find that fractional insulator phases appear when the tunneling is dominated by the intra-trimer part. To quantify the residual bipartite entanglement in a cluster, we calculate the second-order Renyi entropy, which can be experimentally measured by quantum interference of many-body twins. The second-order Renyi entropy itself is continuous everywhere, however, the continuousness of its first-order derivative breaks down at the phase boundary. This means that the bosonic superfluid-insulator transitions can still be efficiently captured by the residual entanglement in our cluster MF treatment. Besides to the bosonic superfluid-insulator transitions, our cluster MF treatment may also be used to capture the signature of EE for other QPTs in quantum superlattice models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.