Abstract

An efficient and robust approach is proposed in order to conduct numerical simulations of collisional particle dynamics in the Lagrangian framework. Clusters of particles are made of particles that interact or may interact during the next global time-step. Potential collision partners are found by performing a test move, that follows the patterns of a hard-sphere model. The clusters are integrated separately and the collisional forces between particles are given by a soft-sphere collision model. However, the present approach also allows longer range inter-particle forces. The integration of the clusters can be done by any one-step ordinary differential equation solver, but for dilute particle systems, the variable step-size Runge–Kutta solvers as the Dormand and Prince scheme [J. Comput. Appl. Math. 6 (1980) 19] are superior. The cluster integration method is applied on sedimentation of 5000 particles in a two-dimensional box. A significant speed-up is achieved. Compared to a traditional discrete element method with the forward Euler scheme, a speed-up factor of three orders of magnitude in the dilute regime and two orders of magnitude in the dense regime were observed. As long as the particles are dilute, the Dormand and Prince scheme is ten times faster than the classical fourth-order Runge–Kutta solver with fixed step size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.