Abstract

Physiologically-based pharmacokinetic (PBPK) models can be challenging to work with because they can have too many parameters to identify from observable data. The profile likelihood method can help solve this issue by determining parameter identifiability and confidence intervals, but it involves repetitive parameter optimizations that can be time-consuming. The Cluster Gauss-Newton method (CGNM) is a parameter estimation method that efficiently searches through a wide range of parameter space. In this study, we propose a method that approximates the profile likelihood by reusing intermediate computation results from CGNM, allowing us to obtain the upper bounds of the profile likelihood without conducting additional model evaluation. This method allows us to quickly draw approximate profile likelihoods for all unknown parameters. Additionally, the same approach can be used to draw two-dimensional profile likelihoods for all parameter combinations within seconds. We demonstrate the effectiveness of this method on three PBPK models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call